Frame 6 Users Group Conference

Coatings for Industrial Gas Turbines

Praxair Surface Technologies, Inc.
Indianapolis, IN
Houston, TX, Charlotte, NC
June 2014
Sanibel Island, FL
Overview

Turbine Coatings

Combustor Coatings

Compressor Coatings
Compressor Coatings
Compressor Coatings

- Bell mouth:
 Air inlet coated with SermeTel Air Dry Epoxy Coating System
Compressor Coatings

• Casing refurbishment capability:
 › No diffusion layer therefore no base material loss.
 › Mild chemical stripping solution required to remove coatings therefore no risk of attack to base metal.
 › Parts can be restored to “as new” condition.

Casing “as received” Casing after refurbishment
Compressor Coatings

- **Metallic-Ceramic Coatings:**
 - Erosion, Corrosion and oxidation resistant
 - Fouling and chemical resistant
 - Improve surface finish significantly
 - Increase compressor efficiency
 - Environmentally friendly
 - Chrome Free
 - Cad Replacement
Compressor Coatings
SermeTel® System 5380DP®

- < 25 µin Ra (.030” cutoff)
- > 2000 hr scribed in salt fog
- Thin inorganic barrier
- Sacrificial, Densely Packed aluminum-ceramic primer
- 8000+ psi bond
- Stable at pH 4 to 8
- Stable to 1050F (566C) in continuous operation
- No mechanical polishing

Specifications:
- DL 2062-27, 83342NU – Siemens
- GE – F50TF62, PWA 110, RR
- Solar, GE IGT, etc
SermeTel 5380DP

SermeTel base coats can be sealed with ceramic and/or organic topcoats, as well as paints to provide corrosion barrier coatings, with extended life.

- Thin inorganic barrier
- Sacrificial aluminum/ceramic primer
- Base Material
Compressor Coatings

- **Mobile compressor coatings:**
 - Eliminates de-blading and re-blading
 - Coat compressors at customer site
 - Reduces overhaul cycle time & cost
 - Coating prevents corrosion & fouling
 - Customers are power generation plants (OEM involvement)
Compressor Coatings

• Efficiency Gains:
 › Quantified Payback Measured on Two (2) Sister W501F’s at FP&L.
 › Compressor Efficiency Increase 0.64%
 › Coating Payback in Less Than Three (3) Months
 › Some operators report 2-4% Efficiency increases

[Graph showing compressor efficiency comparison over time]

DATA TAKEN AT HIGH LOADS ONLY
NO LOSS IN COMPRESSOR EFFICIENCY NOTED
Compressor Coatings

• **SermaLon:**
 Antifouling coating with Non-stick organic barrier to reduce Fouling caused by:-

 › Inorganic Fouling
 - Formation of corrosion products
drying/deposit of dissolved minerals
electrostatic deposition

 › Organic Fouling
 - Polymerization of hydrocarbons
deposition of tars, carbonaceous deposits

![Graph showing efficiency over months with SermaLon and No coating](image)
Compressor Coatings

Centrifugal Compressor Rotor and Statics coated with SermaLon
SermaLon

Multi-layer organic/inorganic coating

- Non-stick organic barrier
- Inhibiting organic film
- Sacrificial aluminum/ceramic primer

Physical Properties

- Typical Thickness Range: 0.004-0.006 inches (100-150 μm)
- Maximum Continuous Operating Temperature: 500°F (260°C)
- Peak Operating Temperature/Time: 600°F (315°C)/1 hour
- pH Operating Range: 3-9

- 8000+ psi bond
- < 40 μin RA (.030” cutoff)
- Stable at pH 3 to 9
- Stable to 500°F (260°C)
Advanced Compressor Coatings

- Compressor Erosion:
 - Inlet water fogging systems increase power, however blades can be damaged by Liquid Droplet Erosion.
 - Typical attack on the leading edge

- Advanced TiN Coatings can help control or eliminate this damage

- Both laboratory and field testing (7FA)
Titanium Nitride – Type II

- Water jet laboratory testing was used to select the best TiN type coating for field testing.

- PST’s selected two 24K TiN Coatings:
 - 24K Type II multilayer coating
 - 24K Type IV multilayer TiN w/compliant Ti Layers

- 7FA 30,000 hour field test results confirmed lab testing
 - 24K Type II showed minimal degradation

- Estimated life of the 24K Type II coating is > 50,000 hours
Compressor Coatings

- **Chrome Free Coatings:**
 - Driven by
 - Hazardous Material Regulations
 - RoHS
 - WEEE (electronics)
 - ELV (automotive)
 - REACH
 - Worker Safety Regulations
 - OSHA TLV
 - Industry Efforts
 - OEM Programs
 - Military - Industrial Consortia
 - Chrome 6+ free base and sealer coats.
 - No performance deficit compared to traditional SermeTel.

<table>
<thead>
<tr>
<th>Chrome containing Praxair Coating</th>
<th>Equivalent Chrome (VI) Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>SermeTel W</td>
<td>SermeTel 7100</td>
</tr>
<tr>
<td>SermaSeal 570A</td>
<td>SermaSeal 7700</td>
</tr>
<tr>
<td>SermeTel W + 570A</td>
<td>SermeTel 7725</td>
</tr>
</tbody>
</table>
Thermal Barrier Coatings

MCrAlY (Metal + CrAlY) Bond coat
Ceramic top coat
Hot Section Coating Evolution

TBC’s

Increased turbine temperatures (°F)

-100 0 0 100 200 300 400 500 600

Bond Coats
MCrAlY’s Aluminides

EBPVD
DVC
Multi-layer
Low k
SPS
HP DVC
EBC + CMC?

NextGen MCrAlY++ Aluminide +

Low Density

Low Density

DVC

DVC

EBPVD

EBPVD

Muti-layer

Muti-layer

Low k

Low k

Low k

SPS

SPS

SPS

EBC + CMC?

EBC + CMC?

NextGen MCrAlY++ Aluminide +

NextGen MCrAlY++ Aluminide +

APS

APS

Shrouded APS

Shrouded APS

Tribomet

Tribomet

HV OF

HV OF

LPPS

LPPS
Bond Coat Selection

Powder Chemistry

- APS
- HVOF
- Shrouded APS
- LPPS

Coating Process

Chemistry and Coating Process are your Key Decisions

Land/aero-based engine applications

Marine-based engine applications
Thermal Sprayed MCrAlY

Dual layer CoNiCrAlY, by Shrouded Plasma process

Single layer CoNiCrAlY bondcoat, by HVOF process
Microstructure of TBCs

- **Erosion Resistance**
 - APS Abradable
 - 30-40% porosity
 - APS Low density
 - 10-30% porosity
 - Zircoat® - DVC
 - 10% porosity ~ 20 Cracks/cm
 - EBPVD
 - Columnar Structure

- **Strain Tolerance - Thermal Shock Resistance**
 - Suspension Plasma Spray
 - Columnar Structure
 - Low k with APS 8YSZ inter layer and shroud plasma bondcoat

Suspension Plasma Spray
- Columnar Structure
Dense Vertically Cracked Thermal Barriers

- **Zircoat DVC – Thermal Barriers**
 - Improved Toughness over Low Density
 - 3X to 4X the erosion resistance of low density
 - Greater thermal strain tolerance due to vertical cracks
 - Greater thickness capability up to 0.100”
 - ~2X higher thermal conductivity

- **Applications:**
 - Blades, Vanes, Ring Segments
 - Combustors, Transitions, Shrouds, fuel nozzles

Erosion Rate (mg/g)

- LZ-16 DVC
 - 50 micron angular Al₂O₃, 200 Ft/sec, 25° C, 20° Angle of Impingement
 - 3X+ higher erosion resistance

JETS – Thermal Shock Test

- % Cracking on OD vs. Temperature C°
 - LZ-45 (85%)
 - LZ-16 (91%)

Furnace Cycles

- 50Min @ 1135°C, 10 min Air Quench
 - Max
 - Min

Low Density (85%) | Dense Vertical Cracked (91%)
Abradable/Abrasive Coatings
Heat shield Section

Common Areas to Coat
› Seal face
› Edges (some)

Solutions
› HVOF/plasma NiCrAlY, NiCoCrAlY, CoNiCrAlY
› Plasma abradables TBC (12-60 mils)
 – 30%-40% porosity

Features / Benefits
› Bondcoats (Corrosion & Oxidation)
› Topcoats (Thermal Protection and air tight)
Abrasive Tip Systems

● Zircoat
 › YSZ DVC –
 › OEM Approved Compressor and Turbine applications

● Tribomet
 › Entrapment plating process
 › “Traps” Abrasives in metal matrix (Ni or MCrAlY)
 – CBN, SiC, Al2O3, etc
 › Particles can be coarse or fine dependent on requirements and interaction with mating surfaces
 › OEM approved blade tip and seal applications
 › Tribomet can coat non line of sight surfaces (seal teeth)
Combustor Coatings

MCrAlY (Metal + CrAlY)

TBC (Thermal Barrier Coating)
Combustion Section

Common Areas to Coat
- Liners / Venturis / Transition Pieces
- Cowl Caps, Fuel Nozzles, X-Fire Tubes

Solutions
- NiCrAlY, NiCoCrAlY, CoNiCrAlY
- Low Density TBC (< 20 mils)
 - 5-20% and 15-25% porosity
- Higher Purity Low Density TBC
 - Up to 40 mils
- DVC (20-100 mils)

Features / Benefits
- Bondcoats (Corrosion & Oxidation)
- Topcoats (Thermal Protection)
Combustor Coatings

• End covers & caps:
 › Air Plasma Spray (APS)
 › MCrAlY & TBC
 - Reduce Metal Temperature
 - Reduce Cracking, Erosion and Burning
Combustor Coatings

• **Liners and Transition Pieces:**

 › APS Plasma spray

 › MCrAlY & TBC
 - Reduce Metal Temperature
 - Reduce Cracking and Burning

 › Chrome Carbide
 - Extend Life & Reduce Wear on Spring

 › Complex part geometry
Combustor Coatings

- Tiles and segment plates:
 - APS Plasma spray
 - MCrAlY & TBC
 - Chrome Carbide
Combustor Coatings

• Annular combustor:
 › APS Plasma spray
 › MCrAlY & TBC
 › Large capability to coat any size OEM parts and geometry
Combustor Coatings

- Hot gas casings:
 - APS Plasma spray
 - MCrAlY & TBC
 - Large capability to coat any size OEM parts and geometry
Turbine Coatings

MCrAlY (Metal + CrAlY)

TBC (Thermal Barrier Coating)
Turbine Coatings
Turbine Section

Common Areas to Coat
› Blades / Vanes / Shroud Tiles
› Rotors / Disk Restoration

Solutions
› SermaLoy J, SermAlcote, PtAl
› NiCrAlY, NiCoCrAlY, CoNiCrAlY
› Low Density TBC (< 20 mils)
 – 5-20% and 15-25% porosity
› Higher Purity Low Density TBC
 – Up to 40 mils
› DVC (20-100 mils)
› Restoration w/ Ni-Al plus SermeTel 2F-1

Features / Benefits
› Aluminides & Bondcoats
 – (Corrosion & Oxidation)
› Topcoats (Thermal Protection)
› Restoration

Ni-Al + SermeTel 2F-1
Blade and Vane Coating

- **MCrAlY Bond coats**
 - Low Pressure Plasma (LPPS),
 - Air Plasma Spray (APS)
 - High Velocity Oxy-Fuel (HVOF)

- **TBC Top coats**
 - Air Plasma Spray
 - Suspension Plasma Spray (SPS)
Challenges on Coating Characterization
Example 1: Metallography

A tale of two samples from the same coating!

Bond coat

Top coat
Example 2: Bond Cap Tensile Strength Test

ASTM C-633

Mating Cap
Adhesive
Coating
Bond Cap

Tensile Test Results (psi)

<table>
<thead>
<tr>
<th>Run Number</th>
<th>FM 1000 Adhesive</th>
<th>3M 2214 Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you.

For more information,
please visit www.praxairsurfacetechnologies.com